The BME280 is a great new chip which was originally designed for the next generation of smartphones. It is made up of a very accurate pressure sensor and an associated temperature sensor which helps calibrate the pressure readings.
And just for fun they threw in a pretty solid humidity sensor in there as well! So with an I2C connection you have access to enough weather data to make some pretty good predictions for your local area.
Or you can just use the pressure sensor with it's abililty to discern the difference in 7.5cm in altitude.
The chip contains smarts to smooth out measurements
Parameter | Technical data |
---|---|
Operation range
|
Pressure: 300…1100 hPa
Temperature: -40…85°C |
Supply voltage VDDIO
Supply voltage VDD |
1.2 … 3.6 V
1.71 … 3.6 V |
Interface
|
I²C and SPI
|
Average current consumption (typ.) (1Hz data refresh rate)
|
1.8 μA @ 1 Hz (H, T)
2.8 μA @ 1 Hz (P, T) 3.6 μA @ 1 Hz (H, P, T) T = temperature |
Average current consumption in sleep mode
|
0.1 μA
|
Humidity sensor
Response time (τ63%) Accuracy tolerance Hysteresis |
1 s
±3% relative humidity ≤2% relative humidity |
Pressure sensor
RMS Noise Sensitivity Error Temperature coefficient offset |
0.2Pa (equiv. to 1.7cm)
±0.25% (equiv. to 1m at 400m height change) ±1.5Pa/K (equiv. to ±12.6cm at 1 °C temperature change) |
Parts Required
Here are the parts I used
The sensor you can pick up in the $6 price range – you can connect to the sensor using a standard header the classic dupont style jumper wire.
Name | Link | |
ESP32 | ||
BME280 | ||
Connecting cables |
Connection:
vin—————-3v3
GND————–GND
SCL—————-22
SDA—————-21
Just like this
Code
No libraries required
/ Distributed with a free-will license. // Use it any way you want, profit or free, provided it fits in the licenses of its associated works. // BME280 // This code is designed to work with the BME280_I2CS I2C Mini Module available from ControlEverything.com. // https://www.controleverything.com/content/Humidity?sku=BME280_I2CS#tabs-0-product_tabset-2 #include<Wire.h> // BME280 I2C address is 0x76(108) #define Addr 0x76 void setup() { // Initialise I2C communication as MASTER Wire.begin(); // Initialise Serial communication, set baud rate = 9600 Serial.begin(9600); } void loop() { unsigned int b1[24]; unsigned int data[8]; unsigned int dig_H1 = 0; for(int i = 0; i < 24; i++) { // Start I2C Transmission Wire.beginTransmission(Addr); // Select data register Wire.write((136+i)); // Stop I2C Transmission Wire.endTransmission(); // Request 1 byte of data Wire.requestFrom(Addr, 1); // Read 24 bytes of data if(Wire.available() == 1) { b1[i] = Wire.read(); } } // Convert the data // temp coefficients unsigned int dig_T1 = (b1[0] & 0xff) + ((b1[1] & 0xff) * 256); int dig_T2 = b1[2] + (b1[3] * 256); int dig_T3 = b1[4] + (b1[5] * 256); // pressure coefficients unsigned int dig_P1 = (b1[6] & 0xff) + ((b1[7] & 0xff ) * 256); int dig_P2 = b1[8] + (b1[9] * 256); int dig_P3 = b1[10] + (b1[11] * 256); int dig_P4 = b1[12] + (b1[13] * 256); int dig_P5 = b1[14] + (b1[15] * 256); int dig_P6 = b1[16] + (b1[17] * 256); int dig_P7 = b1[18] + (b1[19] * 256); int dig_P8 = b1[20] + (b1[21] * 256); int dig_P9 = b1[22] + (b1[23] * 256); // Start I2C Transmission Wire.beginTransmission(Addr); // Select data register Wire.write(161); // Stop I2C Transmission Wire.endTransmission(); // Request 1 byte of data Wire.requestFrom(Addr, 1); // Read 1 byte of data if(Wire.available() == 1) { dig_H1 = Wire.read(); } for(int i = 0; i < 7; i++) { // Start I2C Transmission Wire.beginTransmission(Addr); // Select data register Wire.write((225+i)); // Stop I2C Transmission Wire.endTransmission(); // Request 1 byte of data Wire.requestFrom(Addr, 1); // Read 7 bytes of data if(Wire.available() == 1) { b1[i] = Wire.read(); } } // Convert the data // humidity coefficients int dig_H2 = b1[0] + (b1[1] * 256); unsigned int dig_H3 = b1[2] & 0xFF ; int dig_H4 = (b1[3] * 16) + (b1[4] & 0xF); int dig_H5 = (b1[4] / 16) + (b1[5] * 16); int dig_H6 = b1[6]; // Start I2C Transmission Wire.beginTransmission(Addr); // Select control humidity register Wire.write(0xF2); // Humidity over sampling rate = 1 Wire.write(0x01); // Stop I2C Transmission Wire.endTransmission(); // Start I2C Transmission Wire.beginTransmission(Addr); // Select control measurement register Wire.write(0xF4); // Normal mode, temp and pressure over sampling rate = 1 Wire.write(0x27); // Stop I2C Transmission Wire.endTransmission(); // Start I2C Transmission Wire.beginTransmission(Addr); // Select config register Wire.write(0xF5); // Stand_by time = 1000ms Wire.write(0xA0); // Stop I2C Transmission Wire.endTransmission(); for(int i = 0; i < 8; i++) { // Start I2C Transmission Wire.beginTransmission(Addr); // Select data register Wire.write((247+i)); // Stop I2C Transmission Wire.endTransmission(); // Request 1 byte of data Wire.requestFrom(Addr, 1); // Read 8 bytes of data if(Wire.available() == 1) { data[i] = Wire.read(); } } // Convert pressure and temperature data to 19-bits long adc_p = (((long)(data[0] & 0xFF) * 65536) + ((long)(data[1] & 0xFF) * 256) + (long)(data[2] & 0xF0)) / 16; long adc_t = (((long)(data[3] & 0xFF) * 65536) + ((long)(data[4] & 0xFF) * 256) + (long)(data[5] & 0xF0)) / 16; // Convert the humidity data long adc_h = ((long)(data[6] & 0xFF) * 256 + (long)(data[7] & 0xFF)); // Temperature offset calculations double var1 = (((double)adc_t) / 16384.0 - ((double)dig_T1) / 1024.0) * ((double)dig_T2); double var2 = ((((double)adc_t) / 131072.0 - ((double)dig_T1) / 8192.0) * (((double)adc_t)/131072.0 - ((double)dig_T1)/8192.0)) * ((double)dig_T3); double t_fine = (long)(var1 + var2); double cTemp = (var1 + var2) / 5120.0; double fTemp = cTemp * 1.8 + 32; // Pressure offset calculations var1 = ((double)t_fine / 2.0) - 64000.0; var2 = var1 * var1 * ((double)dig_P6) / 32768.0; var2 = var2 + var1 * ((double)dig_P5) * 2.0; var2 = (var2 / 4.0) + (((double)dig_P4) * 65536.0); var1 = (((double) dig_P3) * var1 * var1 / 524288.0 + ((double) dig_P2) * var1) / 524288.0; var1 = (1.0 + var1 / 32768.0) * ((double)dig_P1); double p = 1048576.0 - (double)adc_p; p = (p - (var2 / 4096.0)) * 6250.0 / var1; var1 = ((double) dig_P9) * p * p / 2147483648.0; var2 = p * ((double) dig_P8) / 32768.0; double pressure = (p + (var1 + var2 + ((double)dig_P7)) / 16.0) / 100; // Humidity offset calculations double var_H = (((double)t_fine) - 76800.0); var_H = (adc_h - (dig_H4 * 64.0 + dig_H5 / 16384.0 * var_H)) * (dig_H2 / 65536.0 * (1.0 + dig_H6 / 67108864.0 * var_H * (1.0 + dig_H3 / 67108864.0 * var_H))); double humidity = var_H * (1.0 - dig_H1 * var_H / 524288.0); if(humidity > 100.0) { humidity = 100.0; } else if(humidity < 0.0) { humidity = 0.0; } // Output data to serial monitor Serial.print("Temperature in Celsius : "); Serial.print(cTemp); Serial.println(" C"); Serial.print("Temperature in Fahrenheit : "); Serial.print(fTemp); Serial.println(" F"); Serial.print("Pressure : "); Serial.print(pressure); Serial.println(" hPa"); Serial.print("Relative Humidity : "); Serial.print(humidity); Serial.println(" RH"); delay(1000); }
Output
In the serial monitor you should see something along these lines
Temperature in Celsius : 34.20 C
Temperature in Fahrenheit : 93.56 F
Pressure : 903.94 hPa
Relative Humidity : 0.00 RH
Temperature in Celsius : 34.51 C
Temperature in Fahrenheit : 94.11 F
Pressure : 893.48 hPa
Relative Humidity : 0.00 RH
Temperature in Celsius : 33.74 C
Temperature in Fahrenheit : 92.73 F
Pressure : 919.16 hPa
Relative Humidity : 0.00 RH
Links